© Springer 2008

A 2-factor with Short Cycles Passing Through Specified Independent Vertices in Graph

Jiuying Dong

School of Information Technology, Jiangxi University of Finance Nanchang, 330013, P.R. China. e-mail: shupingwan@163.com; jiuyingdong@126.com

Abstract. For a graph G, we define $\sigma_2(G) := min\{d(u) + d(v) | u, v \notin E(G), u \neq v\}$. Let $k \ge 1$ be an integer and G be a graph of order $n \ge 3k$. We prove if $\sigma_2(G) \ge n + k - 1$, then for any set of k independent vertices v_1, \ldots, v_k , G has k vertex-disjoint cycles C_1, \ldots, C_k of length at most four such that $v_i \in V(C_i)$ for all $1 \le i \le k$. And show if $\sigma_2(G) \ge n + k - 1$, then for any set of k independent vertices v_1, \ldots, v_k , G has k vertex-disjoint cycles C_1, \ldots, C_k of length at $v_i \in V(C_i)$ for all $1 \le i \le k$. And show if $\sigma_2(G) \ge n + k - 1$, then for any set of k independent vertices v_1, \ldots, v_k , G has k vertex-disjoint cycles C_1, \ldots, C_k such that $v_i \in V(C_i)$ for all $1 \le i \le k$, $V(C_1) \cup \cdots \cup V(C_k) = V(G)$, and $|C_i| \le 4$ for all $1 \le i \le k - 1$. The condition of degree sum $\sigma_2(G) \ge n + k - 1$ is sharp.

Key words. Short cycle, degree sum condition, 2-factor, specified vertices.

1. Introduction

In this paper, we only consider finite undirected graphs without loops or multiple edges. We will follow standard terminology and notation from [1] except as indicated. Let G = (V(G), E(G)) be a graph, the minimum degree of G will be denoted by $\delta(G)$ and $\sigma_2(G) := min\{d(u) + d(v)|u, v \in V(G), uv \notin E(G), u \neq v\}$ is the minimum degree sum of nonadjacent vertices.(when G is a complete graph, we define $\sigma_2(G) = \infty$.) For $v \in V(G)$ and $U, W \subset V(G)$. We let $N_G(v, U)$ (or simply N(v, U)) denote the neighborhood of v in U, i.e., $N(v, U) := \{u \in U | uv \in E(G)\}$. Define $d_G(v, U)$ (or simply d(v, U)) denote the degree of v, thus d(v, U) = |N(v, U)|. When U = V(G), we simply write N(v) = N(v, V(G)) and d(v) = d(v, V(G)).

Short cycles is a cycle of length at most four.

Wang [11] considered the degree sum condition, and proved the following:

Theorem 1. Let G be a graph of order at least 3k where k is a positive integer, suppose that $\sigma_2(G) \ge 4k - 1$. Then G contains k vertex-disjoint cycles.

Egawa et al. [4, 5] considered k vertex-disjoint cycles covering vertices of G. They proved the following results respectively:

Theorem 2. Let k, d and n be three integers with $k \ge 3$, $d \ge 4k - 1$, $n \ge 3k$. If G is a graph of order n satisfying the condition that $\sigma_2(G) \ge d$. Then G has k vertex-disjoint cycles covering at least min $\{d, n\}$ vertices of G.

Theorem 3. Let n, h be integers with $n \ge 6$ and $h \ge 7$. Let G be a graph of order n, and suppose that $\sigma_2(G) \ge h$, then G contains two disjoint cycles C_1 and C_2 such that $|V(C_1)| + |V(C_2)| \ge \min\{h, n\}$.

The following was conjectured in [12] and proved for k = 2 in [12] and for all $k \ge 2$ in [6].

Theorem 4. Let k be an integer with $k \ge 2$, if G is a graph of order $n \ge 4k - 1$ satisfying the condition that $\sigma_2(G) \ge n + 2k - 2$, then for any k independent edges e_1, \ldots, e_k of G, G has k vertex-disjoint cycles C_1, \ldots, C_k such that $e_i \in E(C_i)$ for each $i \in \{1, \ldots, k\}$ and $V(C_1) \cup \cdots \cup V(C_k) = V(G)$.

The degree condition is sharp.

For any graph G, F is a 2-factor of G if and only if F is a union of vertex disjoint cycles that span V(G). The following result by Ore [10] is classic theorem about hamiltonian graphs.

Theorem 5. Let G be a graph of order $n \ge 3$. If $\sigma_2(G) \ge n$, then G is hamiltonian.

Ore's theorem implies that G has a 2-factor consisting of exactly one cycle. Brandt et al. [2] and Ralph J. Faudree et al. [7] considered the 2-factor of a graph. They proved the following theorems respectively:

Theorem 6. Let k be a positive integer and let G be a graph of order $n \ge 4k$. If $\sigma_2(G) \ge n$, then G has a 2-factor with exactly k vertex-disjoint cycles.

Theorem 7. Let G be a hamiltonian graph of order $n \ge 6$ and minimum degree at least 5n/12 + 2. Then G has a 2-factor with two components.

For a bipartite graph G with partite sets V_1 and V_2 , we define $\sigma_{1,1}(G) = min\{d_G(x) + d_G(y) | x \in V_1, y \in V_2, xy \notin E(G)\}$. (When G is a complete bipartite graph, we define $\sigma_{1,1}(G) = \infty$).

Matsumura [9] proved the maximum number of 4-cycle passing through given edges in a graph:

Theorem 8. Suppose $k \ge 1$, $1 \le s \le k$, $n \ge 2k$, and $\sigma_{1,1}(G) \ge max\{\lceil \frac{4n+2s-1}{3} \rceil, \lceil \frac{2n-1}{3} \rceil + 2k\}$. Then for any k independent edges e_1, \ldots, e_k of G, G contains k vertex-disjoint cycles C_1, \ldots, C_k such that $e_i \in E(C_i), |C_i| \le 6$, and there are at least s 4-cycle in $\{C_1, \cdots, C_k\}$.

For the problem of cycle passing through specified vertices, Egawa et al. [3] considered k cycles passing through k distinct vertices. They proved the following:

Theorem 9. Let G be a graph of order n with minimum degree $\delta(G)$. If for a positive integer k,

A 2-factor with Short Cycles Passing Through Specified Independent Vertices in Graph 73

- a) $n = 3k, \, \delta(G) \ge 7k 2/3 \text{ or }$
- b) $3k + 1 \le n \le 4k, \, \delta(G) \ge 2n + k 3/3 \text{ or}$
- c) $4k \le n \le 6k 3, \delta(G) \ge 3k 1$ or
- d) $n \ge 6k 3, \, \delta(G) \ge n/2,$

then for any set of k specified vertices $\{v_1, v_2, \dots v_k\}$ there is a 2-factor of G with k cycles C_i such that $v_i \in V(C_i)$ for $1 \le i \le k$. The assumption on the minimum degree is sharp in all cases.

Ishigami [8] discussed the minimum degree condition of G containing k vertexdisjoint cycles of length at most four each of which contains one of the k prescribed vertices, and proved the following Theorem:

Theorem 10. Let $k \ge 1$ be an integer and G a graph of order $n \ge 3k$ with $\delta(G) \ge \lfloor \sqrt{n+k^2-3k+1} \rfloor + 2k-1$. Then for any k distinct vertices $\{x_1, x_2, \dots, x_k\}$, there exists k vertex-disjoint cycles C_1, \dots, C_k of order at most four with $x_i \in V(C_i)$ for $i \in \{1, \dots, k\}$.

We consider the minimum degree sum of nonadjacent vertices, and obtain the following:

Theorem 11. Let $k \ge 1$ be an integer and G be a graph of order $n \ge 3k$ satisfying the condition that $\sigma_2(G) \ge n+k-1$. Then for any set of k independent vertices v_1, \ldots, v_k , G has k vertex-disjoint cycles C_1, \ldots, C_k of length at most four such that $v_i \in V(C_i)$ for all $1 \le i \le k$.

The condition $\sigma_2(G) \ge n + k - 1$ is sharp.

Theorem 12. Let $k \ge 1$ be an integer and G be a graph of order $n \ge 3k$ satisfying the condition that $\sigma_2(G) \ge n + k - 1$. Then for any set of k independent vertices v_1, \ldots, v_k , G has k vertex-disjoin cycles C_1, \ldots, C_k such that $v_i \in V(C_i)$ for all $1 \le i \le k$, $V(C_1) \cup \cdots \cup V(C_k) = V(G)$, and $|C_i| \le 4$ for all $1 \le i \le k - 1$.

The condition $\sigma_2(G) \ge n + k - 1$ is sharp.

2. Examples

The degree condition of Theorem 11 and Theorem 12 are sharp in the following sense.

Example 1. Suppose n = 3k. Consider three vertex disjoint graphs G_1 , G_2 and G_3 . Let G_1 be independent vertex set of order k, G_2 be a complete graph of order 2k - 1, $G_3 = \{w\}$. Join G_1 completely to G_2 , and join G_2 completely to G_3 . Thus we get graph G. Then $min\{d(x) + d(y) | xy \notin E(G), x \in V(G_1), y \in v(G_1)\} = n + k - 2$. Clearly, every cycle passing through some vertex of G_1 must contain at least two vertices of G_2 . So for the *k* independent vertices of G_1 , *G* has no *k* cycles satisfy the property of Theorem 11.

Example 2. Suppose $n \ge 3k$. Consider three vertex disjoint graphs G_1 , G_2 and G_3 . Let $G_1 = \{x\}$ be a vertex, G_2 be independent vertex set of order k, G_3 be a complete graph of order n - k - 1. Join x completely to G_2 , and join G_2 completely to G_3 . Thus we get graph G. Then $min\{d_G(x) + d_G(y)|xy \notin E(G), x \in V(G_1), y \in V(G_3)\} = k + k + n - k - 2 = n + k - 2$. Clearly, every cycle passing through x must contain at least two vertices in G_2 . Therefore for k independent vertices in G_2 , G has no k cycles satisfy the property of Theorem 12.

3. Lemmas

Lemma 1. Let $P = u_1u_2 \cdots u_s$ be a path in G, $u \in V(G) - V(P)$, when $uu_1 \notin E(G)$, if $d(u_s, P) + d(u, P) \ge s$, then G has a path P' with vertex set $V(P') = V(P) \cup \{u\}$ whose end vertices are u and u_1 . when $uu_1 \in E(G)$, if $d(u_s, P) + d(u, P) \ge s + 1$, then G has a path P' with vertex set $V(P') = V(P) \cup \{u\}$ whose end vertices are u and u_1 .

Proof. When $uu_1 \notin E(G)$, let $I = \{u_{i-1} | uu_i \in E(G), 1 < i \le s\}$. $N(u_s, P) \subseteq V(P - u_s)$, $I \subseteq V(P - u_s)$. This implies that $|I \cap N(u_s, P)| \ge |I| + |N(u_s, P)| - |I \cup N(u_s, P)| \ge d(u_s, P) + d(u, P) - (s - 1) \ge s - s + 1 = 1$. It follows that there exists u_{i-1} in $I \cap N(u_s, P)$. Then $P' = uu_i u_{i+1} \cdots u_s u_{i-1} \cdots u_1$ is the desired path. When $uu_1 \in E(G)$, the result is obvious.

Lemma 2. Let $P = u_1u_2 \cdots u_s$ be a path with $s \ge 3$ in G. If $d(u_s, P) + d(u_1, P) \ge s$, then G has a cycle C with V(C) = V(P).

Proof. Clearly, we may assume that $u_1u_s \notin E(G)$. Let $I = \{u_{i-1}|u_1u_i \in E(G), 1 \le i < s\}$. Then $I \subseteq V(P) - \{u_s\}$, $N(u_s, P) \subseteq V(P) - \{u_s\}$. This implies that $|I \cap N(u_s, P)| \ge |I| + |N(u_s, P)| - |I \cup N(u_s, P)| \ge d(u_1, P) + d(u_s, P) - (s-1) \ge s - s + 1 = 1$. It follows that there exists u_{i-1} in $I \cap N(u_s, P)$. Then $P' = u_1u_iu_{i+1}\cdots u_su_{i-1}\cdots u_1$ is the desired cycle.

4. Proof of Theorem 11

We choose G to be a maximal counterexample, that is, if x and y are nonadjacent vertices in G, then G + xy contains k vertex disjoint cycles C_1, \ldots, C_k of length at most four in G such that $v_i \in V(C_i)$ for all $1 \le i \le k$. We may assume that $xy \in E(C_k)$. Then C_1, \ldots, C_{k-1} are vertex disjoint cycles of length at most four in G such that $v_i \in V(C_i)$ for all $1 \le i \le k-1$, $v_k \notin \bigcup_{i=1}^{k-1} V(C_i)$, and $\sum_{i=1}^{k-1} |V(C_i)| \le n-3$. Among all possible choices of a set of k-1 vertex disjoint cycles of length at most four in G satisfying $v_i \in V(C_i)$ for all $1 \le i \le k-1$, $v_k \notin \bigcup_{i=1}^{k-1} V(C_i)$, $\sum_{i=1}^{k-1} |V(C_i)| \le n-3$. Select one collection such that A 2-factor with Short Cycles Passing Through Specified Independent Vertices in Graph 75

$$\sum_{i=1}^{k-1} |V(C_i)| \text{ is minimum.}$$
(1)

Subject to (1), we may further choose $C_1, C_2, \ldots, C_{k-1}$ such that

$$\sum_{i=1}^{k-1} d(v_k, C_i)$$
is as small as possible. (2)

Let $L = G[\bigcup_{i=1}^{k-1} V(C_i)], H = G - L.$

We also assume that in this selection any permutation of the vertices $\{v_1, v_2 \cdots, v_k\}$ can be used.

We claim $xv_k \in E(G)$ for all $x \in V(H)$.

Suppose $xv_k \notin E(G)$. Then $d(v_k, H) + d(x, H) \leq |V(H)| - 1$. For otherwise there is a cycle of length four containing v_k in H. Thus $d(v_k, L) + d(x, L) \geq n + k - 1 - (|V(H)| - 1) = |L| + k = \sum_{i=1}^{k-1} (|C_i| + 1) + 1$. This implies there is C_i in L such that $d(v_k, C_i) + d(x, C_i) \geq |C_i| + 2$. If $|C_i| = 3$, let $C_i = x_1 x_2 v_i x_1$, then $d(x, C_i) = 3$, $d(v_k, C_i) = 2$ ($v_k v_i \notin E(G)$). Thus there is a cycle $C'_i = xx_2 v_i x$ and $d(v_k, C'_i) = 1$. Which contradicts (2). So $|C_i| = 4$. By (1) and $v_k v_i \notin E(G)$, it is easy to check that $d(v_k, C_i) \leq 2$, thus $d(x, C_i) \geq 4$. We may get a smaller cycle than C_i , a contradiction to (1). Therefore $xv_k \in E(G)$ for all $x \in V(H)$. As claimed.

The proof of the Theorem 11 is divided into three cases:

Case 1. |H| = 3. Let $V(H) = \{w_1, w_2, v_k\}$.

As $w_1w_2 \notin E(G)$, then $d(w_1, L) + d(w_2, L) \ge n + k - 1 - 2 = |L| + k = \sum_{i=1}^{k-1} (|C_i| + 1) + 1$. This implies that there exists C_i in L, say $C_i = C_1$, such that $d(w_1, C_1) + d(w_2, C_1) \ge |C_1| + 2$.

If $|C_1| = 4$, say $C_1 = v_1 x_1 x_2 x_3 v_1$, then by (1) $N(w_1, C_1) = N(w_2, C_1) = \{x_1, x_2, x_3\}$. Moreover we again by (1) get $v_k x_1 \notin E(G)$, $v_k x_2 \notin E(G)$, $v_k x_3 \notin E(G)$. Let $L_1 = L - C_1$. Then $d(v_1, L_1) + d(v_k, L_1) \ge n + k - 1 - 2 - 2 = |L_1| + k + 2 = \sum_{i=2}^{k-1} (|C_i| + 1) + 4$. This implies that there exists C_i in L_1 , say $C_i = C_2$, such that $d(v_1, C_2) + d(v_k, C_2) \ge |C_2| + 2$. By (1) $|C_2| \ne 4$, we get $|C_2| = 3$. And as $d(v_k, C_2) \le 2$, $d(v_1, C_2) \le 2$, that is $d(v_1, C_2) + d(v_k, C_2) \le 4$, a contradiction to $d(v_1, C_2) + d(v_k, C_2) \ge 5$.

Hence $|C_1| = 3$. $d(w_1, C_1) + d(w_2, C_1) \ge |C_1| + 2 = 5$, say $C_1 = v_1 x_1 x_2 v_1$. We may assume without loss of generality that $d(w_1, C_1) = 3$, $d(w_2, C_1) \ge 2$ and $w_2 x_2 \in E(G)$, if $v_k x_2 \in E(G)$, then there exist cycle $v_k x_2 w_2 v_k$ and cycle $v_1 x_1 w_1 v_1$. So $v_k x_2 \notin E(G)$. By $d(w_2, C_1) \ge 2$, if $w_2 x_1 \in E(G)$, then $v_k x_1 \notin E(G)$. Similarly, if $w_2 v_1 \in E(G)$, then $v_k x_1 \notin E(G)$. So $d(v_k, C_1) = 0$. Let $L_1 = L - C_1$. Then $d(v_1, L_1) + d(v_k, L_1) \ge n + k - 1 - 6 = |L_1| + k - 1 = \sum_{i=2}^{k-1} (|C_i| + 1) + 1$. This implies there exists C_i in L_1 , say i = 2, such that $d(v_1, C_2) + d(v_k, C_2) \ge |C_2| + 2$. By (1) $|C_2| \ne 4$, $|C_2| = 3$. As $d(v_k, C_2) \le 2$, $d(v_1, C_2) \le 2$, that is $d(v_1, C_2) + d(v_k, C_2) \le 4$, a contradiction to $d(v_1, C_2) + d(v_k, C_2) \ge 5$.

Case 2. |H| = 4. Let $V(H) = \{w_1, w_2, w_3, v_k\}$.

As $d(w_1, L) + d(w_2, L) \ge n + k - 1 - 2 = n - 4 + k + 1 = |L| + k + 1 = \sum_{i=1}^{k-1} (|C_i| + 1) + 2$. This means that there exists C_i in L, say i = 1, such that $d(w_1, C_1) + 1 = 2$.

 $d(w_2, C_1) \ge |C_1| + 2$. If $|C_1| = 4$, say $C_1 = v_1 x_1 x_2 x_3 v_1$. By (1) $N(w_1, C_1) = N(w_2, C_1) = \{x_1, x_2, x_3\}$. Hence $v_k x_1 \notin E(G)$, $v_k x_2 \notin E(G)$, $v_k x_3 \notin E(G)$. Let $L_1 = L - C_1$. Then $d(v_1, L_1) + d(v_k, L_1) \ge n + k - 1 - 3 - 3 = |L_1| + k + 1 = \sum_{i=2}^{k-1} (|C_i| + 1) + 3$. This implies that there exists C_i in L_1 , say i = 2, such that $d(v_1, C_2) + d(v_k, C_2) \ge |C_2| + 2$. By (1) $|C_2| \ne 4$, $|C_2| = 3$. As $d(v_k, C_2) \le 2$, $d(v_1, C_2) \le 2$, that is $d(v_1, C_2) + d(v_k, C_2) \le 4$ which is a contradiction.

Hence $|C_1| = 3$. Say $C_1 = x_1 x_2 v_1 x_1$, $L_1 = L - C_1$. As $d(w_1, C_1) + d(w_2, C_1) \ge 5$. We may assume $d(w_1, C_1) = 3$. If $w_2 x_1 \in E(G)$, then $w_3 x_1 \notin E(G)$, $v_k x_1 \notin E(G)$. If $w_2 x_2 \in E(G)$, $w_2 x_1 \in E(G)$, then $w_3 x_1 \notin E(G)$, $w_3 x_2 \notin E(G)$, $v_k x_1 \notin E(G)$, $v_k x_2 \notin E(G)$. If $w_3 x_1 \in E(G)$, then $v_k x_1 \notin E(G)$. So $d(w_2, C_1) + d(w_3, C_1) + d(v_k, C_1) \le 5$, $d(w_2, L_1) + d(w_3, L_1) + d(v_1, L_1) + d(v_k, L_1) \ge 2(n + k - 1) - 15 = 2|L_1| + 2(k - 2) + 1 = 2\sum_{i=2}^{k-1} (|C_i| + 1) + 1$. This implies that there exists C_i in L_1 , say i = 2, such that $d(w_2, C_2) + d(w_3, C_2) + d(v_1, C_2) + d(v_k, C_2) \ge 2(|C_2| + 1) + 1 = 2|C_2| + 3$. If $|C_2| = 4$, then by (1), $d(v_1, C_2) \le 2$, $d(v_k, C_2) \le 2$, $d(w_2, C_2) \le 3$, $d(w_3, C_2) \le 2$

 $\begin{array}{l} ||c_2| = 4, \text{ then by } (1, a(v_1, v_2) \leq 2, a(v_k, v_2) \leq 2, a(w_2, v_2) \leq 5, a(w_3, v_2) \leq 3, \\ \text{3, that is } d(w_2, C_2) + d(w_3, C_2) + d(v_k, C_2) + d(v_1, C_2) \leq 10, \\ \text{a contradiction.} \end{array}$

Hence $|C_2| = 3$. Say $C_2 = v_2y_1y_2v_2$. That is $d(w_2, C_2) + d(w_3, C_2) + d(v_1, C_2) + d(v_k, C_2) \ge 9$. On the other hand $d(v_1, C_2) \le 2$, $d(v_k, C_2) \le 2$. So $d(w_2, C_2) + d(w_3, C_2) \ge 5$. We may assume without loss of generality $d(w_3, C_2) = 3$. If $d(w_2, C_2) = 3$, then $d(v_1, C_2) + d(v_k, C_2) \ge 3$. If $v_ky_1 \in E(G)$, then we get two cycles $v_ky_1w_3v_k, v_2y_2w_2v_2$. So $v_ky_1 \notin E(G)$. If $v_ky_2 \in E(G)$, then we get two cycles $v_ky_2w_3v_k, v_2y_1w_2v_2$. So $v_ky_2 \notin E(G)$. So $d(v_k, C_2) = 0$. Thus we obtain $d(v_1, C_2) + d(v_k, C_2) \le 2$ a contradiction. Hence $d(w_2, C_2) \le 2$. It is not difficult to see that $d(w_2, C_2) = 2$, $d(v_1, C_2) = 2$, $d(v_k, C_2) = 2$. If $w_2y_1 \in E(G)$, then we get two cycles $v_ky_2w_2v_k, v_2y_1w_2v_2$. So $w_2y_1 \notin E(G), w_2y_2 \notin E(G)$, then we get two cycles $v_ky_2w_2v_k, v_2y_1w_3v_2$. So $w_2y_1 \notin E(G), w_2y_2 \notin E(G)$, then we get two cycles $v_ky_2w_2v_k, v_2y_1w_3v_2$. So $w_2y_1 \notin E(G), w_2y_2 \notin E(G)$, then we get two cycles $v_ky_2w_2v_k, v_2y_1w_3v_2$. So $w_2y_1 \notin E(G), w_2y_2 \notin E(G), d(w_2, C_2) \le 1$, a contradiction to $d(w_2, C_2) = 2$.

Case 3. $|H| \ge 5$.

Let w_1, w_2, w_3 and $w_4 \in V(H)$. Then $d(w_1, L) + d(w_2, L) + d(w_3, L) + d(w_4, L) \ge 2n + 2k - 2 - 4 = 2n + 2k - 6 \ge 2(|L| + 5) + 2k - 6 = 2(\sum_{i=1}^{k-1} (|C_i| + 1)) + 6$. This implies there is C_i in L such that $d(w_1, C_i) + d(w_2, C_i) + d(w_3, C_i) + d(w_4, C_i) \ge 2(|C_i| + 1) + 1 = 2|C_i| + 3$.

If $|C_i| = 3$. Then $d(w_1, C_i) + d(w_2, C_i) + d(w_3, C_i) + d(w_4, C_i) \ge 9$. Say $C_i = x_1x_2v_ix_1$. We may assume without loss of generality $d(w_1, C_i) = 3$, $d(w_2, C_i) \ge 2$ and $d(w_3, C_i) \ge 1$. If $d(w_2, C_i) = 3$, then $d(w_3, C_i) \le 1$. Since suppose $w_3x_2 \in E(G)$, then there are two cycles $v_kw_3x_2w_2v_k$, $w_1v_ix_1w_1$. So $w_3x_2 \notin E(G)$. Suppose $w_3x_1 \in E(G)$, then there are two cycles $v_kw_3x_1w_2v_k$, $w_1v_ix_2w_1$. So $w_3x_1 \notin E(G)$. Similarly $d(w_4, C_i) \le 1$. That is $d(w_1, C_i) + d(w_2, C_i) + d(w_3, C_i) + d(w_4, C_i) \le 8$, a contradiction. Hence $d(w_2, C_i) = 2$, i.e., $d(w_3, C_i) + d(w_4, C_i) \ge 4$. If $N(w_2, C_i) = \{x_1, x_2\}$, then $w_3x_1 \notin E(G)$, $w_3x_2 \notin E(G)$. Similarly, $w_4x_1 \notin E(G)$, $w_4x_2 \notin E(G)$. That is $d(w_3, C_i) + d(w_4, C_i) \le 2$, a contradiction. Therefore we may assume $N(w_2, C_i) = \{x_2, v_i\}$, then $w_3x_2 \notin E(G)$, $w_4x_2 \notin E(G)$. Furthermore, if $w_3x_1 \in E(G)$, then $w_4x_1 \notin E(G)$. Since there are two cycles $v_kw_3x_1w_4v_k$, $w_1v_ix_2w_1$. That is $d(w_3, C_i) + d(w_4, C_i) \le 3$, a contradiction.

Therefore $|C_i| = 4$. Then $d(w_1, C_i) + d(w_2, C_i) + d(w_3, C_i) + d(w_4, C_i) \ge 11$. Let $C_i = x_1 x_2 x_3 v_i x_1$. By (1), we may assume $d(w_1, C_i) = 3$, $d(w_2, C_i) = 3$,

 $d(w_3, C_i) = 3$, that is $N(w_1, C_i) = N(w_2, C_i) = N(w_3, C_i)$. We obtain two cycles $v_k w_2 x_2 w_3 v_k$, $w_1 x_1 v_i x_3 w_1$. This completes the proof of Theorem 11.

5. Proof of Theorem 12

We assume that G does not have k cycles satisfying the property of Theorem 12. By Theorem 11, we can choose vertex disjoint cycles C_1, \ldots, C_k such that

- (i) $v_i \in V(C_i)$ for all $1 \le i \le k$.
- (ii) $|C_i| = 3, i \in I_m$ for some $I_m \subset \{1, \dots, k\}, |I_m| = m$ and that *m* is maximal, that is to say, for any $j \in \{1, \dots, k\} I_m, |C_j| \neq 3$.
- (iii) The length of a longest path in G T is maximal.

Where $T := G[\bigcup_{i=1}^{k} V(C_i)]$. Let $P = u_1 \cdots u_s$ be a longest path in G - T, t = n - |T|.

Claim 1. t = s.

Suppose t > s. For any $u \in V(G) - T - V(P)$. It is obvious $uu_1 \notin E(G)$, $uu_s \notin E(G)$. And by Lemma 1, If $d(u, P) + d(u_1, P) \ge s$, then there is a path P' with vertex set $V(P) \cup \{u\}$, which contradicts to (iii). Hence $d(u, P) + d(u_1, P) \le s - 1$, $d(u, P) + d(u_s, P) \le s - 1$. Thus $2d(u, T) + d(u_1, T) + d(u_s, T) \ge 2n + 2k - 2 - 2(s - 1) - 2(t - s - 1) = 2k + 2|T| + 2 = 2\sum_{i=1}^{k} (|C_i| + 1) + 2$. Therefore there is some C_i , say i = 1, satisfying $2d(u, C_1) + d(u_1, C_1) + d(u_s, C_1) \ge 2(|C_1| + 1) + 1 = 2|C_1| + 3$.

If $|C_1| = 4$, say $C_1 = v_1 w_1 w_2 w_3 v_1$. By the maximality of m, $d(w, C_1) \le 3$, $w \in \{u_1, u_s, u\}$. So $2d(u, C_1) \ge 5$, i.e., $d(u, C_1) = 3$. As $d(u_1, C_1) + d(u_s, C_1) \le 6$, $2d(u, C_1) \ge 5$, i.e., $d(u, C_1) = 3$. $d(u_1, C_1) + d(u_s, C_1) \ge 5$. By the symmetry of u_1 and u_s , we may assume $d(u_1, C_1) = 3$, then $d(u_s, C_1) \ge 2$. If $u_s v_1 \in E(G)$, then $u_s w_1 \notin E(G)$, $u_s w_3 \notin E(G)$, $u_s w_2 \in E(G)$. Then we replace C_1 and P by $C'_1 = u_1 w_1 v_1 w_3 u_1$ and $P' = u_2 \cdots u_s w_2 u$, |P'| = |P| + 1, a contradiction to (iii). So $w_s v_1 \notin E(G)$. If $u_s w_1 \in E(G)$, $u_s w_2 \in E(G)$. Then we replace C_1 and P by $C'_1 = u_s w_1 v_1 w_3 u_s$ and $P' = u_{s-1} \cdots u_1 w_2 u$, |P'| = |P| + 1, a contradiction to (iii). So we may assume $u_s w_1 \in E(G)$, $u_s w_2 \in E(G)$. Then we replace C_1 and P by $C'_1 = u_1 w_1 v_1 w_3 u_s$ and $P' = u_2 \cdots u_s w_2 u$, |P'| = |P| + 1, a contradiction to (iii).

So $|C_1| = 3$. Say $C_1 = v_1 w_1 w_2 v_1$. $2d(u, C_1) + d(u_1, C_1) + d(u_s, C_1) \ge 9$. By $d(u_1, C_1) + d(u_s, C_1) \le 6$, $2d(u, C_1) \ge 3$, i.e., $d(u, C_1) \ge 2$. We say $d(u, C_1) \ne 3$. If $d(u, C_1) = 3$, then $d(u_1, C_1) + d(u_s, C_1) \ge 3$, we may assume $d(u_1, C_1) \ge 2$, by the symmetry of w_1 and w_2 , assume $u_1 w_1 \in E(G)$. Then we replace C_1 and P by $C'_1 = uv_1 w_2 u$, $P' = w_1 u_1 \cdots u_s$, |P'| = |P| + 1, a contradiction. So $d(u, C_1) = 2$, $d(u_1, C_1) + d(u_s, C_1) \ge 5$, then we may assume $uw_2 \in E(G)$, $d(u_1, C_1) = 3$, $d(u_s, C_1) \ge 2$. If $uv_1 \in E(G)$, then we replace C_1 and P by $C'_1 = uv_1 w_2 u$, $P' = w_1 u_1 \cdots u_s$, |P'| = |P| + 1, a contradiction. So $d(u_s, C_1) \ge 2$, assume $u_s w_2 \in E(G)$, then we replace C_1 and P by $C'_1 = u_1 v_1 w_1 u_1$, $P' = u_2 \cdots u_s w_2 u$, |P'| = |P| + 1, a contradiction. As claimed.

Claim 2. G[V(P)] is hamiltonian.

Suppose G[V(P)] is not hamiltonian. Then $u_1u_s \notin E(G)$. By Lemma 2, $d(u_1, P) + d(u_s, P) \le s - 1$. Thus $d(u_1, T) + d(u_s, T) \ge n + k - 1 - s + 1 = n - s + k = 1$

 $\sum_{i=1}^{k} (|C_i|+1)$. So there exists some C_i , say i = 1, satisfying $d(u_1, C_1) + d(u_s, C_1) \ge |C_1| + 1$. If $|C_1| = 3$, then $d(u_1, C_1) + d(u_s, C_1) \ge 4$, implying that there exists a hamilton cycle C'_1 of $G[V(C_1) \cup V(P)]$ containing v_1 . Thus C'_1, C_2, \ldots, C_k are the desired cycles, a contradiction. So $|C_1| = 4$. By the maximality of m, assume $d(u_1, C_1) = 3$, $d(u_s, C_i) \ge 2$. It is easily seen that there is also a hamilton cycle C'_1 of $G[V(C_1) \cup V(P)]$ containing v_1 , and C'_1, C_2, \ldots, C_k are the desired cycles, a contradiction. As claimed.

Therefore we may assume $u_1u_s \in E(G)$.

Case 1. $d(u_i, V(C_j)) \leq 1$ for any $i, j(i \leq s, j \leq k)$.

As $\sigma_2(G) \ge n + k - 1$, G is (k + 1)- connected, $G - \{v_1, \dots, v_k\}$ is connected. Hence there is some *i*, *j* satisfying $d(u_i, C_j - \{v_i\}) \ge 1$, say i = 1, j = 1.

If $|C_1| = 4$, say $C_1 = w_1 w_2 w_3 v_1 w_1$.

If $u_1w_1 \in E(G)$, then $u_sw_2 \notin E(G)$. Or else say $C'_1 = u_1w_1v_1w_3w_2u_s\cdots u_1$, thus C'_1, C_2, \ldots, C_k are the desired cycles, a contradiction. Similarly, $u_sv_1 \notin E(G)$. If $u_1w_2 \in E(G)$, by the similar argument, we get $u_sw_3 \notin E(G)$, $u_sw_1 \notin E(G)$. So $d(u_s, C_1) = 0$. And by lemma 1, if $d(w_2, P) + d(u_s, P) \ge s + 1$, there exists a hamilton path w_2Ru_1 with vertex set $V(P) \cup \{w_2\}$ connecting two end vertices w_2 and u_1 , yielding the cycle $C'_1 = u_1w_1v_1w_3w_2Ru_1$. Thus C'_1, C_2, \ldots, C_k are the desired cycles, a contradiction. So $d(w_2, P) + d(u_s, P) \le s$. Then $d(u_s, C_1) + d(w_2, C_1) = d(w_2) + d(u_s) - [d(w_2, P) + d(u_s, P)] - d(w_2, T - C_1) - d(u_s, T - C_1) \ge n + k - 1 - s - \sum_{i=2}^k |C_i| - (k - 1) = n - s - \sum_{i=2}^k |C_i| = |C_1|$. So $d(u_s, C_1) \ge |C_1| - 2 = 2$, a contradiction to $d(u_s, C_1) = 0$. Hence $u_1w_2 \notin E(G)$. Then by Lemma 1, $d(w_2, P) + d(u_s, P) \le s - 1$. And $d(u_s, C_1) + d(w_2, C_1) \ge$ $n + k - 1 - (s - 1) - \sum_{i=2}^k |C_i| - (k - 1) = |C_1| + 1$. So $d(u_s, C_1) \ge |C_1| + 1 - 2 = 3$, a contradiction to $d(u_s, C_1) \le 2$.

So $u_1w_1 \notin E(G)$. By the symmetry of w_1 and w_3 , $u_1w_3 \notin E(G)$. Hence $u_1w_2 \in E(G)$. Then $u_sw_3 \notin E(G)$, $u_sw_1 \notin E(G)$. $d(u_s, C_1) \le 2$. Then by lemma 1, $d(w_3, P) + d(u_s, P) \le s - 1$, $d(u_s, C_1) + d(w_3, C_1) \ge n + k - 1 - (s - 1) - \sum_{i=2}^{k} |C_i| - (k - 1) = |C_1| + 1$. So $d(u_s, C_1) \ge |C_1| + 1 - 2 = 3$, a contradiction.

Therefore $|C_1| = 3$. Say $C_1 = w_1 w_2 v_1 w_1$. By the symmetry of w_1 and w_2 , assume $u_1 w_1 \in E(G)$, then $u_s w_2 \notin E(G)$, $u_s v_1 \notin E(G)$, $d(u_s, C_1) \leq 1$. If $u_1 w_2 \in E(G)$, then $u_s w_1 \notin E(G)$, $d(u_s, C_1) = 0$. By Lemma 1, $d(w_2, P) + d(u_s, P) \leq s$. $d(u_s, C_1) + d(w_2, C_1) \geq n + k - 1 - s - \sum_{i=2}^{k} |C_i| - (k-1) = |C_1|$. So $d(u_s, C_1) \geq |C_1| - 2 = 1$, a contradiction. So $u_1 w_2 \notin E(G)$, $d(u_s, C_1) \leq 1$. By Lemma 1, $d(w_2, P) + d(u_s, P) \leq s - 1$. Then $d(u_s, C_1) \geq n + k - 1 - (s-1) - \sum_{i=2}^{k} |C_i| - (k-1) - 2 \geq |C_1| + 1 - 2 = 2$, a contradiction.

Case 2. $d(u_i, C_j) \ge 2$ for some $i, j (i \le s, j \le k)$.

Claim 2.1. $d(u_i, C_j) \le 1$ for any $i, j, i \le s, j \in I_m$, i.e., $|C_j| = 3$.

Suppose to the contrary, there is some *i*, *j* satisfying $d(u_i, C_j) \ge 2$, $i \le s$, $j \in I_m$. We assume that $d(u_1, C_1) \ge 2$. Then $d(u_s, C_1) = 0$. $d(u_2, C_1) = 0$. Let $C_1 = w_1v_1w_2w_1$. By Lemma 1, $d(u_2, P) + d(w_2, P) \le s$, $d(v_1, P) + d(u_s, P) \le s$. So $d(u_2, T - C_1) + d(v_1, T - C_1) + d(u_s, T - C_1) + d(w_2, T - C_1) = d(u_2) + d(v_1) + d(v_1) + d(v_2) + d(v_2)$ $\begin{aligned} &d(u_s) + d(w_2) - [d(u_2, P) + d(w_2, P)] - [d(u_s, P) + d(v_1, P)] - d(v_1, C_1) - d(u_s, C_1) - d(u_2, C_1) &\geq 2n + 2k - 2 - 2s - 4 = 2(n - s - |C_1|) + 2k = 2\sum_{i=2}^{k} (|C_i| + 1) + 2 \text{ implying some } C_i \text{ in } T - C_1, \text{ say } i = 2, \text{ satisfying } d(u_2, C_2) + d(v_1, C_2) + d(u_s, C_2) + d(w_2, C_2) &\geq 2(|C_2| + 1) + 1 = 2|C_2| + 3. \text{ If } |C_2| = 3, \text{ then } d(v_1, C_2) + d(w_2, C_2) &\leq 5, d(u_2, C_2) + d(u_s, C_2) \geq 4. \text{ So there exists a hamilton cycle } C'_2 \text{ of } G[V(C_2) \cup (V(P) - \{u_1\})], \text{ and a hamilton cycle } C'_1 \text{ of } G[V(C_1) \cup \{u_1\}], \text{ we get the desired cycles } C'_1, C'_2, C_3, \dots, C_k, \text{ a contradiction. So } |C_2| = 4. d(u_2, C_2) + d(v_1, C_2) + d(w_2, C_2) \geq 11. \text{ If } d(v_1, C_2) = 3, d(w_2, C_2) = 4, \text{ then we get two triangles } C'_1 = v_1 x_2 x_3 v_1, C'_2 = w_2 x_1 v_2 w_2, \text{ a contradiction to (ii). So } d(v_1, C_2) + d(w_2, C_2) \leq 6, d(u_2, C_2) + d(u_s, C_2) \geq 5. \text{ Then there exists a hamilton cycle } C'_1 \text{ of } G[V(C_1) \cup \{u_1\}], \text{ and a hamilton cycle } C'_2 \text{ of } G[V(C_2) \cup (V(P) - \{u_1\})], \text{ a contradiction cycle } C'_2 \text{ of } G[V(C_2) \cup (V(P) - \{u_1\})], \text{ and a hamilton cycle } C'_2 \text{ of } G[V(C_2) \cup (V(P) - \{u_1\})], \text{ a contradiction cycle } C'_2 \text{ of } G[V(C_2) \cup (V(P) - \{u_1\})], \text{ a contradiction. As claimed.} \end{aligned}$

Therefore by Claim 2.1, $d(u_i, C_j) \ge 2$ for some $i, j, i \le s, j \in \{1, ..., k\} - I_m$, i.e., $|C_j| = 4$.

If $d(u_i, C_j) \neq 3$ for any $i, j, i \leq s, j \in \{1, ..., k\} - I_m$.

We may assume that $d(u_1, C_1) = 2$. Then $d(u_2, C_1) \le 2$, $d(u_s, C_1) \le 2$. So there exists some vertex x in C_1 such that $u_1x \notin E(G)$, $u_2x \notin E(G)$, $u_sx \notin E(G)$, but $u_1x^- \in E(G)$. By Lemma 1, $d(u_2, P) + d(x, P) \le s - 1$, $d(u_s, P) + d(x, P) \le s - 1$. So $d(u_2, T - C_1) + d(u_s, T - C_1) + 2d(x, T - C_1) \ge 2n + 2k - 2 - 2(s - 1) - 4 - 4 = 2(n - s - |C_1|) + 2k = 2\sum_{i=2}^{k} (|C_i| + 1) + 2$ yielding that for some $i \ge 2$, say i = 2, satisfying $d(u_2, C_2) + d(u_s, C_2) + 2d(x, C_2) \ge 2(|C_2| + 1) + 1 = 2|C_2| + 3$. If $|C_2| = 3$, then $d(x, C_2) \le 3$, $2d(x, C_2) \le 6$, $d(u_2, C_2) + d(u_s, C_2) \ge 3$. So $d(u_2, C_2) \ge 2$ or $d(u_s, C_2) \ge 2$, a contradiction to Claim 2.1. So $|C_2| = 4$. By the maximality of m, $d(x, C_2) \le 3$, $2d(x, C_2) \le 6$, $d(u_2, C_2) + d(u_s, C_2) \ge 5$. So $d(u_2, C_2) \ge 3$ or $d(u_s, C_2) \ge 3$, a contradiction to assumption.

Hence $d(u_i, C_j) = 3$ for some $i, j, i \le s, j \in \{1, ..., k\} - I_m$.

We may assume that $d(u_1, C_1) = 3$. Say $C_1 = w_1 w_2 w_3 v_1 w_1$. Then by the maximality of m, $N(u_1, C_1) = \{w_1, w_2, w_3\}$. $d(u_2, C_1) = 0$, $d(u_s, C_1) = 0$. By Lemma 1, $d(u_2, P) + d(v_1, P) \le s - 1$, $d(u_s, P) + d(v_1, P) \le s - 1$. Hence $d(u_2, T - C_1) + d(u_s, T - C_1) + 2d(v_1, T - C_1) \ge 2n + 2k - 2 - 2s + 2 - 4 = 2\sum_{i=2}^{k} (|C_i| + 1) + 6$ yielding that for some $i \ge 2$, say i = 2, satisfying $d(u_2, C_2) + d(u_s, C_2) + 2d(v_1, C_2) \ge 2(|C_2| + 1) + 1 = 2|C_2| + 3$. If $|C_2| = 3$, then $d(v_1, C_2) \le 2$, $(v_1v_2 \notin E(G))$, $2d(v_1, C_2) \le 4$, $d(u_2, C_2) + d(u_s, C_2) \ge 5$. So $d(u_2, C_2) = 3$ or $d(u_s, C_2) = 3$, a contradiction to Claim 2.1. So $|C_2| = 4$. By the maximality of m, $d(v_1, C_2) \le 2$, $2d(v_1, C_2) \le 4$, $d(u_2, C_2) + d(u_s, C_2) \ge 7$. So $d(u_2, C_2) = 4$ or $d(u_s, C_2) = 4$, a contradiction to the maximality of m. This completes the proof of Theorem 12.

Acknowledgements. I would like to thank the referees for their exceptionally thorough reading of this manuscript.

References

- 1. Bollobás B.: Extremal Graph Theory. Academic Press. London (1978)
- Brandt, S., Chen, G., Faudree, R., R. Gould, J., Lesniak, L.: Degree conditions for 2-factors. J. Graph Theory 24, 165–173 (1997)

- 3. Egawa, Y., Enomoto, H., Faudree, R., Li, H., schiermeyer, I.: Two-Factors Each Component of Which Contains a Specified Vertex. J. Graph Theory **43**, 188–198 (2003)
- 4. Egawa, Y., Hagita, M., Kawarabayashi, K., Wang, H.: Covering vertices of a graph by *k* disjoint cycles. Discrete Math. **270**, 115–125 (2003)
- Egawa, Y., Fujita, S., Kawarabayashi, K., Wang, H.: Existence of two disjoint long cycles in graph. Discrete Math. 305, 154–169 (2005)
- 6. Egawa, Y., Faudree, R., Györi, E., Ishigami, Y., Schelp, R., Wang, H.: Vertex-disjoint cycles containing specified edges. Graphs and Combin. 16, 81–92 (2000)
- 7. Faudree, R., Gould, R., Jacobson, M., Lesniak, L., Saito, A.: A note on 2-factors with two components. Discrete Math. **300**, 218–224 (2005)
- Ishigami Y.: Vertex-Disjoint Cycles of Length at Most Four Each of Which Contains a Specified Vertex. J. Graph Theory 37, 37–47 (2001)
- Matsumura H.: Vertex-disjoint 4-cycles containing specified edges in a bipartite graph. Discrete Math. 297, 78–90 (2005)
- 10. Ore O.: Note on hamiltonian circuits. Amer. Math Monthly 67, 55 (1960)
- Wang H.: On the maximum number of independent cycles in a graph. Discrete Math. 205, 183–190 (1999)
- Wang H.: Covering a graph with cycles passing through given edges. J. Graph Theory 26, 105–109 (1997)

Received: December 20, 2006 Final version received: December 12, 2007