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Abstract. For a graph G, we define σ2(G) := min{d(u)+d(v)|u, v �∈ E(G), u �= v}. Let k ≥ 1
be an integer and G be a graph of order n ≥ 3k. We prove if σ2(G) ≥ n + k − 1, then for any
set of k independent vertices v1, . . . , vk , G has k vertex-disjoint cycles C1, . . . , Ck of length at
most four such that vi ∈ V (Ci) for all 1 ≤ i ≤ k. And show if σ2(G) ≥ n+ k − 1, then for any
set of k independent vertices v1, . . . , vk , G has k vertex-disjoint cycles C1, . . . , Ck such that
vi ∈ V (Ci) for all 1 ≤ i ≤ k, V (C1) ∪ · · · ∪ V (Ck) = V (G), and |Ci | ≤ 4 for all 1 ≤ i ≤ k − 1.

The condition of degree sum σ2(G) ≥ n + k − 1 is sharp.
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1. Introduction

In this paper, we only consider finite undirected graphs without loops or multiple
edges. We will follow standard terminology and notation from [1] except as indi-
cated. Let G = (V (G), E(G)) be a graph, the minimum degree of G will be denoted
by δ(G) and σ2(G) := min{d(u)+ d(v)|u, v ∈ V (G), uv �∈ E(G), u �= v} is the min-
imum degree sum of nonadjacent vertices.( when G is a complete graph, we define
σ2(G) = ∞.) For v ∈ V (G) and U, W ⊂ V (G). We let NG(v, U) ( or simply N(v, U))
denote the neighborhood of v in U , i.e., N(v, U) := {u ∈ U |uv ∈ E(G)}. Define
dG(v, U) ( or simply d(v, U)) denote the degree of v, thus d(v, U) = |N(v, U)|.
When U = V (G), we simply write N(v) = N(v, V (G)) and d(v) = d(v, V (G)).

Short cycles is a cycle of length at most four.
Wang [11] considered the degree sum condition, and proved the following:

Theorem 1. Let G be a graph of order at least 3k where k is a positive integer, suppose
that σ2(G) ≥ 4k − 1. Then G contains k vertex-disjoint cycles.

Egawa et al. [4, 5] considered k vertex-disjoint cycles covering vertices of G.
They proved the following results respectively:

Theorem 2. Let k, d and n be three integers with k ≥ 3, d ≥ 4k − 1, n ≥ 3k. If G is a
graph of order n satisfying the condition that σ2(G) ≥ d. Then G has k vertex-disjoint
cycles covering at least min{d, n} vertices of G.
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Theorem 3. Let n, h be integers with n ≥ 6 and h ≥ 7. Let G be a graph of order n,
and suppose that σ2(G) ≥ h, then G contains two disjoint cycles C1 and C2 such that
|V (C1)| + |V (C2)| ≥ min{h, n}.

The following was conjectured in [12] and proved for k = 2 in [12] and for all
k ≥ 2 in [6].

Theorem 4. Let k be an integer with k ≥ 2, if G is a graph of order n ≥ 4k − 1
satisfying the condition that σ2(G) ≥ n + 2k − 2, then for any k independent edges
e1, . . . , ek of G, G has k vertex-disjoint cycles C1, . . . , Ck such that ei ∈ E(Ci) for
each i ∈ {1, . . . , k} and V (C1) ∪ · · · ∪ V (Ck) = V (G).

The degree condition is sharp.
For any graph G, F is a 2-factor of G if and only if F is a union of vertex disjoint

cycles that span V (G). The following result by Ore [10] is classic theorem about
hamiltonian graphs.

Theorem 5. Let G be a graph of order n ≥ 3. If σ2(G) ≥ n, then G is hamiltonian.

Ore’s theorem implies that G has a 2-factor consisting of exactly one cycle.
Brandt et al. [2] and Ralph J. Faudree et al. [7] considered the 2-factor of a graph.
They proved the following theorems respectively:

Theorem 6. Let k be a positive integer and let G be a graph of order n ≥ 4k. If
σ2(G) ≥ n, then G has a 2-factor with exactly k vertex-disjoint cycles.

Theorem 7. Let G be a hamiltonian graph of order n ≥ 6 and minimum degree at least
5n/12 + 2. Then G has a 2-factor with two components.

For a bipartite graph G with partite sets V1 and V2, we define σ1,1(G) =
min{dG(x) + dG(y)|x ∈ V1, y ∈ V2, xy �∈ E(G)}. (When G is a complete bipar-
tite graph, we define σ1,1(G) = ∞).

Matsumura [9] proved the maximum number of 4-cycle passing through given
edges in a graph:

Theorem 8. Suppose k≥1, 1≤s ≤k, n≥2k, and σ1,1(G)≥max{� 4n+2s−1
3 	, � 2n−1

3 	 +
2k}. Then for any k independent edges e1, . . . , ek of G, G contains k vertex-disjoint
cycles C1, . . . , Ck such that ei ∈ E(Ci), |Ci | ≤ 6, and there are at least s 4-cycle in
{C1, · · · , Ck}.

For the problem of cycle passing through specified vertices, Egawa et al. [3]
considered k cycles passing through k distinct vertices. They proved the following:

Theorem 9. Let G be a graph of order n with minimum degree δ(G). If for a positive
integer k,
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a) n = 3k, δ(G) ≥ 7k − 2/3 or
b) 3k + 1 ≤ n ≤ 4k, δ(G) ≥ 2n + k − 3/3 or
c) 4k ≤ n ≤ 6k − 3, δ(G) ≥ 3k − 1 or
d) n ≥ 6k − 3, δ(G) ≥ n/2,

then for any set of k specified vertices {v1, v2, · · · vk} there is a 2-factor of G with k

cycles Ci such that vi ∈ V (Ci) for 1 ≤ i ≤ k. The assumption on the minimum degree
is sharp in all cases.

Ishigami [8] discussed the minimum degree condition of G containing k vertex-
disjoint cycles of length at most four each of which contains one of the k prescribed
vertices, and proved the following Theorem:

Theorem 10. Let k ≥ 1 be an integer and G a graph of order n ≥ 3k with δ(G) ≥


√

n + k2 − 3k + 1� + 2k − 1. Then for any k distinct vertices {x1, x2, · · · xk}, there
exists k vertex-disjoint cycles C1, . . . , Ck of order at most four with xi ∈ V (Ci) for
i ∈ {1, . . . , k}.

We consider the minimum degree sum of nonadjacent vertices, and obtain the
following:

Theorem 11. Let k ≥ 1 be an integer and G be a graph of order n ≥ 3k satisfying the
condition that σ2(G) ≥ n+k−1. Then for any set of k independent vertices v1, . . . , vk,
G has k vertex-disjoint cycles C1, . . . , Ck of length at most four such that vi ∈ V (Ci)

for all 1 ≤ i ≤ k.

The condition σ2(G) ≥ n + k − 1 is sharp.

Theorem 12. Let k ≥ 1 be an integer and G be a graph of order n ≥ 3k satisfying
the condition that σ2(G) ≥ n + k − 1. Then for any set of k independent vertices
v1, . . . , vk, G has k vertex-disjoin cycles C1, . . . , Ck such that vi ∈ V (Ci) for all
1 ≤ i ≤ k, V (C1) ∪ · · · ∪ V (Ck) = V (G), and |Ci | ≤ 4 for all 1 ≤ i ≤ k − 1.

The condition σ2(G) ≥ n + k − 1 is sharp.

2. Examples

The degree condition of Theorem 11 and Theorem 12 are sharp in the following
sense.

Example 1. Suppose n = 3k. Consider three vertex disjoint graphs G1, G2 and G3.
Let G1 be independent vertex set of order k, G2 be a complete graph of order 2k−1,
G3= {w}. Join G1 completely to G2, and join G2 completely to G3. Thus we get
graph G. Then min{d(x) + d(y)|xy �∈ E(G), x ∈ V (G1), y ∈ v(G1)} = n + k − 2.
Clearly, every cycle passing through some vertex of G1 must contain at least two
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vertices of G2. So for the k independent vertices of G1, G has no k cycles satisfy the
property of Theorem 11.

Example 2. Suppose n ≥ 3k. Consider three vertex disjoint graphs G1, G2 and G3.
Let G1 = {x} be a vertex, G2 be independent vertex set of order k , G3 be a com-
plete graph of order n − k − 1. Join x completely to G2, and join G2 completely to
G3. Thus we get graph G. Then min{dG(x) + dG(y)|xy �∈ E(G), x ∈ V (G1), y ∈
V (G3)} = k + k + n − k − 2 = n + k − 2. Clearly, every cycle passing through x

must contain at least two vertices in G2. Therefore for k independent vertices in G2,
G has no k cycles satisfy the property of Theorem 12.

3. Lemmas

Lemma 1. Let P = u1u2 · · · us be a path in G, u ∈ V (G)−V (P ), when uu1 �∈ E(G),
if d(us, P ) + d(u, P ) ≥ s, then G has a path P ′ with vertex set V (P ′) = V (P ) ∪ {u}
whose end vertices are u and u1. when uu1 ∈ E(G), if d(us, P ) + d(u, P ) ≥ s + 1,
then G has a path P ′ with vertex set V (P ′) = V (P ) ∪ {u} whose end vertices are u

and u1.

Proof. When uu1 �∈ E(G), let I = {ui−1|uui ∈ E(G), 1 < i ≤ s}. N(us, P ) ⊆
V (P − us), I ⊆ V (P − us). This implies that |I ∩ N(us, P )| ≥ |I | + |N(us, P )| −
|I ∪ N(us, P )| ≥ d(us, P ) + d(u, P ) − (s − 1) ≥ s − s + 1 = 1. It follows that there
exists ui−1 in I ∩ N(us, P ). Then P ′ = uuiui+1 · · · usui−1 · · · u1is the desired path.
When uu1 ∈ E(G), the result is obvious. �

Lemma 2. Let P = u1u2 · · · us be a path with s ≥ 3 in G. If d(us, P )+ d(u1, P ) ≥ s,
then G has a cycle C with V (C) = V (P ).

Proof. Clearly, we may assume that u1us �∈ E(G). Let I = {ui−1|u1ui ∈ E(G), 1 ≤
i < s}. Then I ⊆ V (P ) − {us}, N(us, P ) ⊆ V (P ) − {us}. This implies that
|I ∩ N(us, P )| ≥ |I | + |N(us, P )| − |I ∪ N(us, P )| ≥ d(u1, P ) + d(us, P ) −
(s − 1) ≥ s − s + 1 = 1. It follows that there exists ui−1 in I ∩ N(us, P ). Then
P ′ = u1uiui+1 · · · usui−1 · · · u1is the desired cycle. �

4. Proof of Theorem 11

We choose G to be a maximal counterexample, that is, if x and y are nonadjacent ver-
tices in G, then G+xy contains k vertex disjoint cycles C1, . . . , Ck of length at most
four in G such that vi ∈ V (Ci) for all 1 ≤ i ≤ k. We may assume that xy ∈ E(Ck).
Then C1, . . . , Ck−1 are vertex disjoint cycles of length at most four in G such that
vi ∈ V (Ci) for all 1 ≤ i ≤ k − 1, vk �∈ ⋃k−1

i=1 V (Ci), and
∑k−1

i=1 |V (Ci)| ≤ n − 3.
Among all possible choices of a set of k − 1 vertex disjoint cycles of length at
most four in G satisfying vi ∈ V (Ci) for all 1 ≤ i ≤ k − 1, vk �∈ ⋃k−1

i=1 V (Ci),∑k−1
i=1 |V (Ci)| ≤ n − 3. Select one collection such that
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k−1∑

i=1

|V (Ci)|is minimum. (1)

Subject to (1), we may further choose C1, C2, . . . , Ck−1such that
k−1∑

i=1

d(vk, Ci)is as small as possible. (2)

Let L = G[
⋃k−1

i=1 V (Ci)], H = G − L.
We also assume that in this selection any permutation of the vertices

{v1,v2 · · · ,vk} can be used.
We claim xvk ∈ E(G) for all x ∈ V (H).
Suppose xvk �∈ E(G). Then d(vk, H) + d(x, H) ≤ |V (H)| − 1. For otherwise

there is a cycle of length four containing vk in H . Thus d(vk, L) + d(x, L) ≥ n +
k − 1 − (|V (H)| − 1) = |L| + k = ∑k−1

i=1 (|Ci | + 1) + 1. This implies there is Ci in
L such that d(vk, Ci) + d(x, Ci) ≥ |Ci | + 2. If |Ci | = 3, let Ci = x1x2vix1, then
d(x, Ci) = 3, d(vk, Ci) = 2 (vkvi �∈ E(G)). Thus there is a cycle C′

i = xx2vix and
d(vk, C

′
i ) = 1. Which contradicts (2). So |Ci | = 4. By (1) and vkvi �∈ E(G), it is easy

to check that d(vk, Ci) ≤ 2, thus d(x, Ci) ≥ 4. We may get a smaller cycle than Ci ,
a contradiction to (1). Therefore xvk ∈ E(G) for all x ∈ V (H). As claimed.

The proof of the Theorem 11 is divided into three cases:

Case 1. |H | = 3. Let V (H) = {w1, w2, vk}.
As w1w2 �∈ E(G), then d(w1, L) + d(w2, L) ≥ n + k − 1 − 2 = |L| + k =∑k−1

i=1 (|Ci | + 1) + 1. This implies that there exists Ci in L, say Ci = C1, such that
d(w1, C1) + d(w2, C1) ≥ |C1| + 2.

If |C1| = 4, say C1 = v1x1x2x3v1, then by (1) N(w1, C1) = N(w2, C1) =
{x1, x2, x3}. Moreover we again by (1) get vkx1 �∈ E(G), vkx2 �∈ E(G), vkx3 �∈ E(G).
Let L1 = L − C1. Then d(v1, L1) + d(vk, L1) ≥ n + k − 1 − 2 − 2 = |L1| + k + 2 =∑k−1

i=2 (|Ci | + 1) + 4. This implies that there exists Ci in L1, say Ci = C2, such
that d(v1, C2) + d(vk, C2) ≥ |C2| + 2. By (1) |C2| �= 4, we get |C2| = 3. And as
d(vk, C2) ≤ 2, d(v1, C2) ≤ 2, that is d(v1, C2) + d(vk, C2) ≤ 4, a contradiction to
d(v1, C2) + d(vk, C2) ≥ 5.

Hence |C1| = 3. d(w1, C1) + d(w2, C1) ≥ |C1| + 2 = 5, say C1 = v1x1x2v1.
We may assume without loss of generality that d(w1, C1) = 3, d(w2, C1) ≥ 2 and
w2x2 ∈ E(G), if vkx2 ∈ E(G), then there exist cycle vkx2w2vk and cycle v1x1w1v1.
So vkx2 �∈ E(G). By d(w2, C1) ≥ 2, if w2x1 ∈ E(G), then vkx1 �∈ E(G). Simi-
larly, if w2v1 ∈ E(G), then vkx1 �∈ E(G). So d(vk, C1) = 0. Let L1 = L − C1. Then
d(v1, L1)+d(vk, L1) ≥ n+k−1−6 = |L1|+k−1 = ∑k−1

i=2 (|Ci |+1)+1. This implies
there exists Ci in L1, say i = 2, such that d(v1, C2) + d(vk, C2) ≥ |C2| + 2. By (1)
|C2| �= 4, |C2| = 3. Asd(vk, C2) ≤ 2, d(v1, C2) ≤ 2, that isd(v1, C2)+d(vk, C2) ≤ 4,
a contradiction to d(v1, C2) + d(vk, C2) ≥ 5.

Case 2. |H | = 4. Let V (H) = {w1, w2, w3, vk}.
As d(w1, L)+d(w2, L) ≥ n+k−1−2 = n−4+k+1 = |L|+k+1 = ∑k−1

i=1 (|Ci |+
1) + 2. This means that there exists Ci in L, say i = 1, such that d(w1, C1) +
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d(w2, C1) ≥ |C1| + 2. If |C1| = 4, say C1 = v1x1x2x3v1. By (1) N(w1, C1) =
N(w2, C1) = {x1, x2, x3}. Hence vkx1 �∈ E(G), vkx2 �∈ E(G), vkx3 �∈ E(G). Let
L1 = L − C1. Then d(v1, L1) + d(vk, L1) ≥ n + k − 1 − 3 − 3 = |L1| + k + 1 =∑k−1

i=2 (|Ci | + 1) + 3. This implies that there exists Ci in L1, say i = 2, such that
d(v1, C2) + d(vk, C2) ≥ |C2| + 2. By (1) |C2| �= 4, |C2| = 3. As d(vk, C2) ≤
2, d(v1, C2) ≤ 2, that is d(v1, C2) + d(vk, C2) ≤ 4 which is a contradiction.

Hence |C1| = 3. Say C1 = x1x2v1x1, L1 = L−C1. As d(w1, C1)+d(w2, C1) ≥ 5.
We may assume d(w1, C1) = 3. If w2x1 ∈ E(G), then w3x1 �∈ E(G), vkx1 �∈ E(G).
Ifw2x2 ∈E(G), w2x1 ∈E(G), thenw3x1 �∈E(G), w3x2 �∈ E(G), vkx1 �∈ E(G), vkx2 �∈
E(G). If w3x1 ∈ E(G), then vkx1 �∈ E(G). So d(w2, C1)+d(w3, C1)+d(vk, C1) ≤ 5,
d(w2, L1) + d(w3, L1) + d(v1, L1) + d(vk, L1) ≥ 2(n + k − 1) − 15 = 2|L1| + 2(k −
2)+1 = 2

∑k−1
i=2 (|Ci |+1)+1. This implies that there exists Ci in L1, say i = 2, such

that d(w2, C2) + d(w3, C2) + d(v1, C2) + d(vk, C2) ≥ 2(|C2| + 1) + 1 = 2|C2| + 3.
If |C2| = 4, then by (1),d(v1, C2) ≤ 2, d(vk, C2) ≤ 2,d(w2, C2) ≤ 3,d(w3, C2) ≤

3, that is d(w2, C2) + d(w3, C2) + d(vk, C2) + d(v1, C2) ≤ 10, a contradiction.
Hence |C2| = 3. Say C2 = v2y1y2v2. That is d(w2, C2)+d(w3, C2)+d(v1, C2)+

d(vk, C2) ≥ 9. On the other hand d(v1, C2) ≤ 2, d(vk, C2) ≤ 2. So d(w2, C2) +
d(w3, C2) ≥ 5. We may assume without loss of generality d(w3, C2) = 3. If
d(w2, C2) = 3, then d(v1, C2) + d(vk, C2) ≥ 3. If vky1 ∈ E(G), then we get two
cycles vky1w3vk, v2y2w2v2. So vky1 �∈ E(G). If vky2 ∈ E(G), then we get two
cycles vky2w3vk, v2y1w2v2. So vky2 �∈ E(G). So d(vk, C2) = 0. Thus we obtain
d(v1, C2) + d(vk, C2) ≤ 2 a contradiction. Hence d(w2, C2) ≤ 2. It is not diffi-
cult to see that d(w2, C2) = 2, d(v1, C2) = 2, d(vk, C2) = 2. If w2y1 ∈ E(G),
then we get two cycles vky1w2vk, v2y2w3v2. If w2y2 ∈ E(G), then we get two cycles
vky2w2vk, v2y1w3v2. So w2y1 �∈ E(G), w2y2 �∈ E(G), d(w2, C2) ≤ 1, a contradic-
tion to d(w2, C2) = 2.

Case 3. |H | ≥ 5.
Let w1, w2, w3 and w4 ∈ V (H). Then d(w1, L) + d(w2, L) + d(w3, L) + d

(w4, L) ≥ 2n+2k−2−4 = 2n+2k−6 ≥ 2(|L|+5)+2k−6 = 2(
∑k−1

i=1 (|Ci |+1))+6.
This implies there is Ci in L such that d(w1, Ci)+d(w2, Ci)+d(w3, Ci)+d(w4, Ci) ≥
2(|Ci | + 1) + 1 = 2|Ci | + 3.

If |Ci | = 3. Then d(w1, Ci) + d(w2, Ci) + d(w3, Ci) + d(w4, Ci) ≥ 9. Say Ci =
x1x2vix1. We may assume without loss of generality d(w1, Ci) = 3, d(w2, Ci) ≥ 2
and d(w3, Ci) ≥ 1. If d(w2, Ci) = 3, then d(w3, Ci) ≤ 1. Since suppose w3x2 ∈
E(G), then there are two cycles vkw3x2w2vk, w1vix1w1. So w3x2 �∈ E(G). Suppose
w3x1 ∈ E(G), then there are two cycles vkw3x1w2vk, w1vix2w1. So w3x1 �∈ E(G).
Similarly d(w4, Ci) ≤ 1. That is d(w1, Ci)+d(w2, Ci)+d(w3, Ci)+d(w4, Ci) ≤ 8, a
contradiction. Hence d(w2, Ci) = 2, i.e., d(w3, Ci)+d(w4, Ci) ≥ 4. If N(w2, Ci) =
{x1, x2}, then w3x1 �∈ E(G), w3x2 �∈ E(G). Similarly, w4x1 �∈ E(G), w4x2 �∈ E(G).
That is d(w3, Ci) + d(w4, Ci) ≤ 2, a contradiction. Therefore we may assume
N(w2, Ci) = {x2, vi}, then w3x2 �∈ E(G), w4x2 �∈ E(G). Furthermore, if w3x1 ∈
E(G), then w4x1 �∈ E(G). Since there are two cycles vkw3x1w4vk, w1vix2w1. That
is d(w3, Ci) + d(w4, Ci) ≤ 3, a contradiction.

Therefore |Ci | = 4. Then d(w1, Ci) + d(w2, Ci) + d(w3, Ci) + d(w4, Ci) ≥
11. Let Ci = x1x2x3vix1. By (1), we may assume d(w1, Ci) = 3, d(w2, Ci) = 3,
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d(w3, Ci) = 3, that is N(w1, Ci) = N(w2, Ci) = N(w3, Ci). We obtain two cycles
vkw2x2w3vk, w1x1vix3w1. This completes the proof of Theorem 11.

5. Proof of Theorem 12

We assume that G does not have k cycles satisfying the property of Theorem 12. By
Theorem 11, we can choose vertex disjoint cycles C1, . . . , Ck such that

(i) vi ∈ V (Ci) for all 1 ≤ i ≤ k.
(ii) |Ci | = 3, i ∈ Im for some Im ⊂ {1, . . . , k},|Im| = m and that m is maximal,

that is to say, for any j ∈ {1, . . . , k} − Im, |Cj | �= 3.
(iii) The length of a longest path in G − T is maximal.

Where T := G[
⋃k

i=1 V (Ci)]. Let P = u1 · · · us be a longest path in G−T , t = n−|T |.

Claim 1. t = s.
Suppose t > s. For any u ∈ V (G) − T − V (P ). It is obvious uu1 �∈ E(G),

uus �∈ E(G). And by Lemma 1, If d(u, P )+d(u1, P ) ≥ s, then there is a path P ′ with
vertex set V (P ) ∪ {u}, which contradicts to (iii). Hence d(u, P ) + d(u1, P ) ≤ s − 1,
d(u, P )+d(us, P ) ≤ s−1. Thus 2d(u, T )+d(u1, T )+d(us, T ) ≥ 2n+2k−2−2(s−
1)−2(t − s −1) = 2k+2|T |+2 = 2

∑k
i=1(|Ci |+1)+2. Therefore there is some Ci ,

say i = 1, satisfying 2d(u, C1)+d(u1, C1)+d(us, C1) ≥ 2(|C1|+1)+1 = 2|C1|+3.
If |C1| = 4, say C1 = v1w1w2w3v1. By the maximality of m, d(w, C1) ≤ 3, w ∈

{u1, us, u}. So 2d(u, C1) ≥ 5, i.e., d(u, C1) = 3. As d(u1, C1) + d(us, C1) ≤ 6,
2d(u, C1) ≥ 5, i.e., d(u, C1) = 3. d(u1, C1) + d(us, C1) ≥ 5. By the symmetry of
u1 and us , we may assume d(u1, C1) = 3, then d(us, C1) ≥ 2. If usv1 ∈ E(G),
then usw1 �∈ E(G), usw3 �∈ E(G), usw2 ∈ E(G). Then we replace C1 and P by
C′

1 = u1w1v1w3u1 and P ′ = u2 · · · usw2u, |P ′| = |P | + 1, a contradiction to (iii).
So usv1 �∈ E(G). If usw1 ∈ E(G), usw3 ∈ E(G). Then we replace C1 and P by
C′

1 = usw1v1w3us and P ′ = us−1 · · · u1w2u, |P ′| = |P | + 1, a contradiction to (iii).
So we may assume usw1 ∈ E(G), usw2 ∈ E(G). Then we replace C1 and P by
C′

1 = u1w1v1w3u1 and P ′ = u2 · · · usw2u, |P ′| = |P | + 1, a contradiction to (iii).
So |C1| = 3. Say C1 = v1w1w2v1. 2d(u, C1) + d(u1, C1) + d(us, C1) ≥ 9. By

d(u1, C1) + d(us, C1) ≤ 6, 2d(u, C1) ≥ 3, i.e., d(u, C1) ≥ 2. We say d(u, C1) �= 3.
If d(u, C1) = 3, then d(u1, C1) + d(us, C1) ≥ 3, we may assume d(u1, C1) ≥ 2, by
the symmetry of w1 and w2, assume u1w1 ∈ E(G). Then we replace C1 and P by
C′

1 = uv1w2u, P ′ = w1u1 · · · us , |P ′| = |P | + 1, a contradiction. So d(u, C1) = 2,
d(u1, C1) + d(us, C1) ≥ 5, then we may assume uw2 ∈ E(G), d(u1, C1) = 3,
d(us, C1) ≥ 2. If uv1 ∈ E(G), then we replace C1 and P by C′

1 = uv1w2u, P ′ =
w1u1 · · · us , |P ′| = |P | + 1, a contradiction. So uw1, uw2 ∈ E(G). As d(us, C1) ≥
2, assume usw2 ∈ E(G), then we replace C1 and P by C′

1 = u1v1w1u1, P ′ =
u2 · · · usw2u, |P ′| = |P | + 1, a contradiction. As claimed.

Claim 2. G[V (P )] is hamiltonian.
SupposeG[V (P )] is not hamiltonian. Thenu1us �∈E(G). By Lemma 2,d(u1, P )+

d(us, P ) ≤ s − 1. Thus d(u1, T ) + d(us, T ) ≥ n + k − 1 − s + 1 = n − s + k =
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∑k
i=1(|Ci |+1). So there exists some Ci , say i = 1, satisfying d(u1, C1)+d(us, C1) ≥

|C1| + 1. If |C1| = 3, then d(u1, C1) + d(us, C1) ≥ 4, implying that there exists
a hamilton cycle C′

1 of G[V (C1) ∪ V (P )] containing v1. Thus C′
1, C2, . . . , Ck are

the desired cycles, a contradiction. So |C1| = 4. By the maximality of m, assume
d(u1, C1) = 3, d(us, Ci) ≥ 2. It is easily seen that there is also a hamilton cycle
C′

1 of G[V (C1) ∪ V (P )] containing v1, and C′
1, C2, . . . , Ck are the desired cycles, a

contradiction. As claimed.
Therefore we may assume u1us ∈ E(G).

Case 1. d(ui, V (Cj )) ≤ 1 for any i, j (i ≤ s, j ≤ k).
As σ2(G) ≥ n + k − 1, G is (k + 1)- connected, G − {v1, . . . , vk} is connected.

Hence there is some i, j satisfying d(ui, Cj − {vj }) ≥ 1, say i = 1, j = 1.
If |C1| = 4, say C1 = w1w2w3v1w1.
If u1w1 ∈ E(G), then usw2 �∈ E(G). Or else say C′

1 = u1w1v1w3w2us · · · u1,
thus C′

1, C2, . . . , Ck are the desired cycles, a contradiction. Similarly, usv1 �∈ E(G).
If u1w2 ∈ E(G), by the similar argument, we get usw3 �∈ E(G), usw1 �∈ E(G).
So d(us, C1) = 0. And by lemma 1, if d(w2, P ) + d(us, P ) ≥ s + 1, there exists
a hamilton path w2Ru1 with vertex set V (P ) ∪ {w2} connecting two end verti-
ces w2 and u1, yielding the cycle C′

1 = u1w1v1w3w2Ru1. Thus C′
1, C2, . . . , Ck are

the desired cycles, a contradiction. So d(w2, P ) + d(us, P ) ≤ s. Then d(us, C1) +
d(w2, C1) = d(w2) + d(us) − [d(w2, P ) + d(us, P )] − d(w2, T − C1) − d(us, T −
C1) ≥ n + k − 1 − s − ∑k

i=2 |Ci | − (k − 1) = n − s − ∑k
i=2 |Ci | = |C1|. So

d(us, C1) ≥ |C1| − 2 = 2, a contradiction to d(us, C1) = 0. Hence u1w2 �∈ E(G).
Then by Lemma 1, d(w2, P ) + d(us, P ) ≤ s − 1. And d(us, C1) + d(w2, C1) ≥
n+k−1− (s −1)−∑k

i=2 |Ci |− (k−1) = |C1|+1. So d(us, C1) ≥ |C1|+1−2 = 3,
a contradiction to d(us, C1) ≤ 2.

So u1w1 �∈ E(G). By the symmetry of w1 and w3, u1w3 �∈ E(G). Hence
u1w2 ∈ E(G). Then usw3 �∈ E(G), usw1 �∈ E(G). d(us, C1) ≤ 2. Then by lemma 1,
d(w3, P )+d(us, P ) ≤ s−1, d(us, C1)+d(w3, C1) ≥ n+k−1−(s−1)−∑k

i=2 |Ci |−
(k − 1) = |C1| + 1. So d(us, C1) ≥ |C1| + 1 − 2 = 3, a contradiction.

Therefore |C1| = 3. Say C1 = w1w2v1w1. By the symmetry of w1 and w2,
assume u1w1 ∈ E(G), then usw2 �∈ E(G), usv1 �∈ E(G), d(us, C1) ≤ 1. If u1w2 ∈
E(G), then usw1 �∈ E(G), d(us, C1) = 0. By Lemma 1, d(w2, P ) + d(us, P ) ≤ s.
d(us, C1)+ d(w2, C1) ≥ n+ k − 1 − s −∑k

i=2 |Ci | − (k − 1) = |C1|. So d(us, C1) ≥
|C1| − 2 = 1, a contradiction. So u1w2 �∈ E(G), d(us, C1) ≤ 1. By Lemma 1,
d(w2, P ) + d(us, P ) ≤ s − 1. Then d(us, C1) ≥ n + k − 1 − (s − 1) − ∑k

i=2 |Ci | −
(k − 1) − 2 ≥ |C1| + 1 − 2 = 2, a contradiction.

Case 2. d(ui, Cj ) ≥ 2 for some i, j (i ≤ s, j ≤ k).

Claim 2.1. d(ui, Cj ) ≤ 1 for any i, j , i ≤ s, j ∈ Im, i.e., |Cj | = 3.
Suppose to the contrary, there is some i, j satisfying d(ui, Cj ) ≥ 2, i ≤ s, j ∈ Im.

We assume that d(u1, C1) ≥ 2. Then d(us, C1) = 0. d(u2, C1) = 0. Let C1 =
w1v1w2w1. By Lemma 1, d(u2, P ) + d(w2, P ) ≤ s, d(v1, P ) + d(us, P ) ≤ s. So
d(u2, T − C1) + d(v1, T − C1) + d(us, T − C1) + d(w2, T − C1) = d(u2) + d(v1) +
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d(us)+d(w2)−[d(u2, P )+d(w2, P )]−[d(us, P )+d(v1, P )]−d(v1, C1)−d(us, C1)−
d(u2, C1)−d(w2, C1) ≥ 2n+2k−2−2s−4 = 2(n−s−|C1|)+2k = 2

∑k
i=2(|Ci |+

1) + 2 implying some Ci in T − C1, say i = 2, satisfying d(u2, C2) + d(v1, C2) +
d(us, C2) + d(w2, C2) ≥ 2(|C2| + 1) + 1 = 2|C2| + 3. If |C2| = 3, then d(v1, C2)

+ d(w2, C2) ≤ 5, d(u2, C2) + d(us, C2) ≥ 4. So there exists a hamilton cycle C′
2

of G[V (C2) ∪ (V (P ) − {u1})], and a hamilton cycle C′
1 of G[V (C1) ∪ {u1}], we get

the desired cycles C′
1, C

′
2, C3, . . . , Ck, a contradiction. So |C2| = 4. d(u2, C2) +

d(v1, C2) + d(us, C2) + d(w2, C2) ≥ 11. If d(v1, C2) = 3, d(w2, C2) = 4, then
we get two triangles C′

1 = v1x2x3v1, C′
2 = w2x1v2w2, a contradiction to (ii). So

d(v1, C2) + d(w2, C2) ≤ 6, d(u2, C2) + d(us, C2) ≥ 5. Then there exists a hamilton
cycle C′

1 of G[V (C1) ∪ {u1}], and a hamilton cycle C′
2 of G[V (C2) ∪ (V (P ) − {u1})],

a contradiction. As claimed.

Therefore by Claim 2.1, d(ui, Cj ) ≥ 2 for some i, j , i ≤ s, j ∈ {1, . . . , k} − Im,
i.e., |Cj | = 4.

If d(ui, Cj ) �= 3 for any i, j , i ≤ s, j ∈ {1, . . . , k} − Im.
We may assume that d(u1, C1) = 2. Then d(u2, C1) ≤ 2, d(us, C1) ≤ 2. So there

exists some vertex x in C1 such that u1x �∈ E(G), u2x �∈ E(G),usx �∈ E(G), but
u1x

− ∈ E(G). By Lemma 1, d(u2, P )+d(x, P ) ≤ s −1, d(us, P )+d(x, P ) ≤ s −1.
So d(u2, T −C1)+d(us, T −C1)+2d(x, T −C1) ≥ 2n+2k−2−2(s −1)−4−4 =
2(n − s − |C1|) + 2k = 2

∑k
i=2(|Ci | + 1) + 2 yielding that for some i ≥ 2, say i = 2,

satisfying d(u2, C2)+d(us, C2)+2d(x, C2) ≥ 2(|C2|+1)+1 = 2|C2|+3. If |C2| = 3,
then d(x, C2) ≤ 3, 2d(x, C2) ≤ 6, d(u2, C2) + d(us, C2) ≥ 3. So d(u2, C2) ≥ 2 or
d(us, C2) ≥ 2, a contradiction to Claim 2.1. So |C2| = 4. By the maximality of
m, d(x, C2) ≤ 3, 2d(x, C2) ≤ 6, d(u2, C2) + d(us, C2) ≥ 5. So d(u2, C2) ≥ 3 or
d(us, C2) ≥ 3, a contradiction to assumption.

Hence d(ui, Cj ) = 3 for some i, j , i ≤ s, j ∈ {1, . . . , k} − Im.
We may assume that d(u1, C1) = 3. Say C1 = w1w2w3v1w1. Then by the maxi-

mality of m, N(u1, C1) = {w1, w2, w3}. d(u2, C1) = 0, d(us, C1) = 0. By Lemma 1,
d(u2, P ) + d(v1, P ) ≤ s − 1, d(us, P ) + d(v1, P ) ≤ s − 1. Hence d(u2, T − C1) +
d(us, T −C1)+2d(v1, T −C1) ≥ 2n+2k−2−2s+2−4 = 2

∑k
i=2(|Ci |+1)+6 yield-

ing that for some i ≥ 2, say i = 2, satisfying d(u2, C2) + d(us, C2) + 2d(v1, C2) ≥
2(|C2| + 1) + 1 = 2|C2| + 3. If |C2| = 3, then d(v1, C2) ≤ 2,(v1v2 �∈ E(G)),
2d(v1, C2) ≤ 4, d(u2, C2) + d(us, C2) ≥ 5. So d(u2, C2) = 3 or d(us, C2) = 3, a
contradiction to Claim 2.1. So |C2| = 4. By the maximality of m, d(v1, C2) ≤ 2,
2d(v1, C2) ≤ 4, d(u2, C2) + d(us, C2) ≥ 7. So d(u2, C2) = 4 or d(us, C2) = 4, a
contradiction to the maximality of m. This completes the proof of Theorem 12.
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6. Egawa, Y., Faudree, R., Györi, E., Ishigami, Y., Schelp, R., Wang, H.: Vertex-disjoint
cycles containing specified edges. Graphs and Combin. 16, 81–92 (2000)

7. Faudree, R., Gould, R., Jacobson, M., Lesniak, L., Saito, A.: A note on 2-factors with
two components. Discrete Math. 300, 218–224 (2005)

8. Ishigami Y.: Vertex-Disjoint Cycles of Length at Most Four Each of Which Contains a
Specified Vertex. J. Graph Theory 37, 37–47 (2001)

9. Matsumura H.: Vertex-disjoint 4-cycles containing specified edges in a bipartite graph.
Discrete Math. 297, 78–90 (2005)

10. Ore O.: Note on hamiltonian circuits. Amer. Math Monthly 67, 55 (1960)
11. Wang H.: On the maximum number of independent cycles in a graph. Discrete Math.

205, 183–190 (1999)
12. Wang H.: Covering a graph with cycles passing through given edges. J. Graph Theory

26, 105–109 (1997)

Received: December 20, 2006
Final version received: December 12, 2007



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


